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The problem of cavitating flow past a two-dimensional curved obstacle is considered. 
Surface tension is included in the dynamic boundary condition. A perturbation 
solution for small values of the surface tension is presented. It is found that the 
position of the separation points is uniquely determined by specifying the value of 
the Weber number and the contact angle at  the separation points. In addition, for 
a given value of the Weber number there exists a particular position of the separation 
points for which the slope is continuous. This solution tends to the classical solution 
satisfying the Brillouin-Villat condition as the surface tension tends to zero. Graphs 
of the results for the cavitating flow past a circular cylinder are presented. 

1. Introduction 
In recent years important progress has been achieved in the understanding of the 

influence of surface tension on cavitating flow past a flat plate. The classical 
Helmholtz-Kirchoff solution yields infinite curvature of the free surface at the edges 
of the plate. Ackerberg (1975) constructed an asymptotic solution for small values 
of the surface tension in which the slope and the curvature of the free surface at the 
edges are both equal to those of the plate. Ackerberg’s solution contains capillary 
waves downstream. Cumberbatch & Norbury (1979) observed that these waves are 
not physically acceptable because they require a supply of energy from infinity. They 
suggested that solutions without waves could be obtained by forcing the slope of the 
free surface at  the edges to be equal to the slope of the plate and allowing the 
curvature to be different from zero a t  the edges. Although they obtained a local 
solution, they did not succeed in matching it with any outer solution. The problem 
was solved by Vanden-Broeck (1981), who provided conclusive analytical and 
numerical evidence that the slope is not continuous at  the separation points. Both 
velocity and curvature are infinite there. 

In the present paper we generalize Vanden-Broeck’s results to the cavitating flow 
past a curved obstacle (see figure 1) .  The position of the separation point may be either 
fixed if it is at  a pointed corner of the body, or free if it is at a certain location of 
a smoothly curved obstacle, An example of fixed detachment is provided by the 
cavitating flow past a flat plate in which the flow leaves the plate at the edges. 
Similarly the flow sketched in figure 1 corresponds to fixed detachment if the obstacle 
is cut along the straight line AB. In the case of free detachment, the classical solution 
leaves the position of the separation points A and B undetermined. This degeneracy 
is usually resolved by imposing the Brillouin-Villat condition, which requires the 
curvature of the free surface to be finite at the separation points (Birkhoff & 
Zarantonello 1957). 
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FIGURE 1 .  Sketch of the flow and the coordinates. 

The problem is formulated in $2, and the classical solution without surface tension 
is computed numerically in $3. The scheme is similar in philosophy if not in details 
to the scheme derived by Brodetsky (1923) and later extended by Birkhoff, Goldstein 
& Zarantonello (1953) and Birkhoff, Young & Zarantonello (1954). Explicit results 
are presented for the cavitating flow past a circular cylinder. 

I n  $4 the numerical solution of $ 3  is used to construct an asymptotic solution for 
small values of the surface tension. It is found that, for most positions of the separa- 
tion points, the slope is not continuous a t  A and B .  The velocity is infinite or equal to 
zero there. The position of the separation points is uniquely determined by specifying 
the value of the Weber number and the contact angle at the separation points. I n  
addition, for a given value of the Weber number there exists a particular position 
of the separation points A and B for which the slope is continuous at A and B.  This 
solution tends to the classical solution satisfying the Brillouin-Villat condition as the 
surface tension tends to zero. 

2. Formulation 
We consider the cavitating flow past a curved obstacle (see figure 1). We denote 

by L a typical dimension of the obstacle. At infinity we have flow with constant 
velocity U. The fluid is assumed to be inviscid and incompressible. We restrict our 
attention to obstacles which are symmetrical with respect to the direction of the 
velocity a t  infinity. Flows past non-symmetrical obstacles can be treated similarly. 
It is convenient to introduce dimensionless variables by choosing L as the unit length 
and U as the unit velocity. 

We introduce the dimensionless potential q5b and stream function $b. The constant 
b is chosen such that q5 = 1 at the separation points. Without loss of generality we 
choose q5 = 0 a t  x = y = 0. The free surface, the obstacle and the negative x-axis are 
portions of the streamline $ = 0. 

We denote the complex velocity by u-iv and we define the function 7-i8 by the 

(2.1) %-iv = er-i@ relation 

We shall seek 7 - i8 as an analytic function off = q4 + i$ in the half-plane $ < 0. The 
complex potential plane is sketched in figure 2 .  At infinity we require the velocity 
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I;@ 
FIGURE 2. The image of the flow in the plane of the complex potential f = 4 + i+ 

to be unity in the x-direction so that the function 7 - i0 vanishes at infinity in view 

On the surface of the cavity the Bernoulli equation and the pressure jump due to 
of (2.1). 

surface tension yield T 

P 
h."- -K = 'p. 2 (2.2) 

Here q is the flow speed, K the curvature of the cavity surface counted positive when 
the centre of curvature lies inside the fluid regions, T the surface tension and p the 
density. I n  dimensionless variables this becomes (for details see Ackerberg 1975) 

Here a is the Weber number defined by 

The symmetry of the problem and the kinematic condition on the obstacle yield 

0($) = 0 (?k = 0, $ < 0) (2.5) 

(2.6) F[x($),y($)l = 0 (?k = 0, 0 < $ < 1) .  

Here F(x, y)  = 0 is the equation of the shape of the obstacle, and the functions 8($) ,  
x (4 )  and y($) denote respectively S(@,O-), x($,O-) and y($,O-). 

This completes the formulation of the problem of determining the function 7 - 8  

and the constant b. For each value of a, r - i0 must be analytic in the half-plane $ < 0 
and satisfy the boundary conditions (2.3), (2.5) and (2.6). 

3. Solution without surface tension 

(2.3) reduces to the free-streamline condition 7 = 0. 
When surface tension is neglected, the Weber number is infinite and the condition 

We define the new variable t by the transformation 

1 1  P = ( t -  i ) g  
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The problem in the complex plane t is illustrated in figure 3. Following Brodetsky 
(1923) we introduce the function Q'( t )  by the relation 

A l + t  
7I l--t 

7-iB = - -1og- -Q'(t), 

where the angle A is defined in figure 1. The conditions (2.3) and (2.5) show that Q ' ( t )  
can be expressed in the form of a Taylor expansion in odd powers oft .  Hence 

The function (3.3) satisfy the conditions (2.3) and (2.5). The coefficients A, have 
to be determined to satisfy the condition (2.6) on the surface ACB of the obstacle. 
We use the notation t = r eiu so that points on ACB are given by r = 1, -in: 6 a < 471. 

Using (3.1) and (2.1) we have 

ax 
- = bsin2ue-'cosB (p = 1, -in < a < in), (3.4) au 

(3.5 ) - = bsin2ue-Tsin~ (p  = I ,  -in < a <in). 
aV 

We solve the problem approximately by truncating the infinite series in (3.3) after 
N terms. We find the N coefficients A ,  and the constant b by a hybrid method 
involving collocation and finite differences. Substituting t = eiu into (3.3) we have 

N 

n - 1  
B ( a )  =-&A+ I: A,sin[(Zn-l)u], 

A -sing 
K 1-cosa n = l  

7(u) = - -log - I: A , c o s [ ( ~ ~ - ~ ) v ] .  (3.7) 
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We now introduce the N mesh points 

It 
-1 ( I =  1 ,  ..., N) crI = - 
2N 

and the N intermediate mesh points 

7c 
@=--  (I-;)  ( I  = 1, ..., N). 

2N 
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(3.8) 

(3.9) 

Using (3.4)-(3.7) and (3.9) we obtain 

in terms of the coefficients An and the constant b. These expressions enable us to 
evaluate %(aI) and ~ ( c r , )  by the trapezoidal rule. Then (2.6) provides N algebraic 
equations for the N +  1 unknowns A, and b, namely 

F[x(c~,) ,y(c~,)]  = 0 ( I  = 1, ..., N). (3.10) 

The last equation is obtained by specifying the abscissa w of the separation point 

x(-+It) = w. (3.1 1 )  
A. Thus 

Thesystem (3.10), (3.1 1) iseasilysolved byNewton'smethod. Explicit computations 
were performed for the cavitating flow past a circular cylinder. The unit length L 
was chosen as the radius of the cylinder. The scheme converges rapidly and the 
solutions obtained were found to agree with the numerical results given by Birkhoff 
& Zarantonello (1957). 

Profiles of the cavity for various values of the angular position y of the separation 
points are presented in figure 4. For y < y* w 55' the free surface enters the body. 
These solutions are acceptable if the body is cut along the straight line AB. For 
y > y** w 124O, the free surfaces cross over and the corresponding solutions are not 
physically acceptable. Physically acceptable solutions for y > y** can be obtained 
by using the method presented by Vanden-Broeck & Keller (1980) to prevent 
overlapping in capillary waves of large amplitude. These solutions are found to be 
the cusped cavities considered before by Southwell & Vaisey (1946), Lighthill (1949) 
and others (see figure 4).  The pressure in the cavity is found as part of the solution. 
Similarly, in the work of Vanden-Broeck & Keller (1980) the pressure in the trapped 
bubble was found as part of the solution. As y tends to y** the pressure in the cavity 
tends to zero. As y tends to 180' the cavity shrinks to  a point, and the solution reduces 
to the classical potential flow past a circle. Thus the family of cusped cavities is the 
physical continuation for y > y** of the family of open cavities. 

The curvature of the free surface in the neighbourhood of the separation point A 
is given by the formula (Brodetsky 1923) 

where 

(3.12) 

(3.13) 

These formula are true for the cavitating flow past any curved obstacle. 
A graph of C versus the angular position of y of the separation points for the flow 

past a circular cylinder is shown in figure 5. The constant C vanishes for y = y*. Thus 
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FIGURE 4. Cavities without surface tension in steady two-dimensional flow past a circular cylinder 
for y = 40°, y = y* x 5 5 O ,  y = 90' and y = y** x 124'. The broken line represents a cusped cavity 
computed numerically by Southwell & Vaisey (1946). The velocity on the free-streamlines of the 
cusped cavity is equal to 0.6U. The corresponding cavitation number is equal to -0.64. 
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FIGURE 5.  Computed values of the pkrameter C as a function of the angle y ,  

(3.12) shows that the curvature a t  the separation points is infinite unless y = y*. If 
we impose the Brillouin-Villat condition, the problem with free detachment has a 
unique solution corresponding to y = y* .  These numerical results are confirmed by 
the existence and uniqueness theorems mentioned by Birkhoff & Zarantonello (1957). 

4. Perturbation solution for small values of the surface tension 
We now assume that the Weber number a is very large. The solution for a = CO 

is simply the solution without surface tension derived in tj 3. Formula (3.12) indicates 
that the solution of tj 3 cannot be uniformly valid as a + co , for the left-hand side 
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of (2.3) can be made arbitrarily large if $ is chosen sufficiently close to unity. Thus 
we seek a solution in the vicinity of the separation point A .  Following Ackerberg 
(1975) we introduce the following scaling of the variables: 

f* = a(-f--), (4.1) 

(4.2) 7* - ie* = a“7 - id -$7c + iy). 

The function 7* satisfies Laplace’s equation in the lower half-plane $* < 0. Thus 

(4.3) 

The boundary conditions (2.3) and (2.6) linearize in the limit u-foo, so that the 
boundary conditions on $* = 0 are (for details see Ackerberg 1975) 

a7* -- - 0  ( $ * = O ,  $ * < O )  
all.* 

a7* 
a$* 
- = 7* ($* = 0, $* > 0). 

(4.4) 

(4.5) 

Relation (3.12) gives the behaviour 

7* - Im C(f*): as If*l+ co. (4.6) 

Cumberbatch & Norbury (1979) noticed that the problem (4.3)-(4.5) had been 
treated by Friedrichs & Levy (1948). The solution of (4.3)-(4.6) not containing waves 
and having the weakest singularity a t  A is given on the free surface by 

1 
7*($* )  = 2dCln$* as #*+O. 

The leading-order terms in (4.7) and (4.8) correspond to flow past a corner of angle 

However, the solution (4.7), (4.8) is not valid near $* = 0 because 7* is unbounded 
a t  $* = 0. 

The asymptotic scheme can now be described as follows. For $ large we have the 
outer solution whose first term is given by the solution of 5 3. This solution merges 
into the solution of (4.3)-(4.6) obtained for $* - 1 ,  i.e. for $- 1 - a-l. The solution 
of (4.3)-(4.6) becomes invalid for $* < 1, i.e. for $- 1 < a-l ,  because 7* is 
unbounded a t  $* = 0. In  order to complete the perturbation calculation we have 
therefore to find a local solution valid for $ - 1 < a-l. Following Vanden-Broeck 
(1981) we seek a local solution which corresponds to a flow past a corner of angle S. 
Thus we write 

e7 - E(@- l)n/PZ-J)-l. (4.10) 

Here E is a constant to be determined as part of the solution. Substitution (4.10) into 
(2.3) we have 

(4.11) 
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FIGURE 6. Computed values of /3( 1) as a function of ad for y = 40°, 70' and 100'. 

E =  1. Matching (4.11) and (4.7) we find 
(4.12) 

Thus we have succeeded in matching the solution (4.7), (4.8) with a local solution 
corresponding to the flow past a corner of angle 6. 

The value of 8 at the separation point A is given by 

(4.13) 

Relation (4.9) shows that S > n for C > 0 and 6 < R for C < 0. Therefore the 
velocity at  the separation points is infinite for C < 0 and equal to zero for C > 0. 

For the flow past a flat plate C = - (n +4)&, and the formulas (4.7)-(4.9) reduce to 
the formulas (4.1)-(4.3) given by Vanden-Broeck (1981). 

Graphs of B(1) versus a-4 for the circular cylinder are shown in figure 6. The 
velocity at  the separation points is infinite for y < y* and equal to zero for y > y*. 

Our results can be interpreted by introducing the contact angle /3 at the separation 

(4.14) 
point A by the relation p = S--n. 
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It can be argued that this angle depends only on the surface tension v and on the 
physical properties of the surface of the obstacle (Batchelor 1967, p. 66). The angle 

can therefore be considered as given. 
Substituting (4.9) into (4.14) we obtain 

(4.15) 

Relation (4.15) and figure 5 shows that the position of the separation point is uniquely 
determined by specifying the angle p and the Weber number a. 

The existence of solutions for which the flow leaves the obstacle tangentially can 
be established as follows. 

As a tends to zero, the free surfaces must approach two horizontal straight lines. 

lim O ( 1 )  = 0. (4.16) 
Therefore 

Provided that O(  1) is a continuous function of a, figure 6 and (4.14) imply the existence 
for each value of y* < y < 90’ of one value of 0 < a < 00 for which 0, = -in + y. 
We describe this relation between a and y by the function 

Y = s ( 4 .  (4.17) 

This result can be reformulated as follows. For each value of the Weber number a 
there exists an angular position y = g ( a )  of the separation points for which the flow 
leaves the obstacle tangentially. 

As a tends to zero the free surfaces tend to two horizontal straight lines. This 
solution leaves the cylinder tangentially only if y = 90’. Therefore 

a+O 

limg(a) = 90’. 
a+o 

(4.18) 

As a tends to infinity, the solution is described by the asymptotic solution (4.7) 
and (4.8). This solution leaves the obstacle tangentially only if C = 0 (see (4.9)). 
Therefore figure 6 implies 

lim g ( a )  = y*. (4.19) 

Relation (4.17) shows that the family of solutions defined by (4.15) tends to the 

U+CX 

classical solution satisfying the Brillouin-Villat condition as a + 00. 
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